Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.858
Filtrar
1.
Future Microbiol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661710

RESUMO

Antibiotics' action, once a 'magic bullet', is now hindered by widespread microbial resistance, creating a global antimicrobial resistance (AMR) crisis. A primary driver of AMR is the selective pressure from antimicrobial use. Between 2000 and 2015, antibiotic consumption increased by 65%, reaching 34.8 billion tons, 73% of which was used in animals. In the dairy cattle sector, antibiotics are crucial for treating diseases like mastitis, posing risks to humans, animals and potentially leading to environmental contamination. To address AMR, strategies like selective dry cow therapy, alternative treatments (nanoparticles, phages) and waste management innovations are emerging. However, most solutions are in development, emphasizing the urgent need for further research to tackle AMR in dairy farms.


Antibiotics are becoming less effective at fighting infections because of antimicrobial resistance (AMR). This phenomenon is mainly caused by the abuse and misuse of antibiotics in both human and veterinary medicine. In the dairy cow industry, the use of antibiotics to treat diseases is a big concern. Ways to tackle this include the promotion of the responsible use of antibiotics, the development of alternative treatments and the discovery of better methods to deal with animal waste. However, much of these are still in development.

2.
Biochem Genet ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664326

RESUMO

Improving the low productivity levels of native cattle breeds in smallholder farming systems is a pressing concern in Pakistan. Crossbreeding high milk-yielding holstein friesian (HF) breed with the adaptability and heat tolerance of Sahiwal cattle has resulted in offspring that are well-suited to local conditions and exhibit improved milk yield. The exploration of how desirable traits in crossbred dairy cattle are selected has not yet been investigated. This study aims to provide the first overview of the selective pressures on the genome of crossbred dairy cattle in Pakistan. A total of eighty-one crossbred, thirty-two HF and twenty-four Sahiwal cattle were genotyped, and additional SNP genotype data for HF and Sahiwal were collected from a public database to equate the sample size in each group. Within-breed selection signatures in crossbreds were investigated using the integrated haplotype score. Crossbreds were also compared to each of their parental breeds to discover between-population signatures of selection using two approaches: cross-population extended haplotype homozygosity and fixation index. We identified several overlapping genes associated with production, immunity, and adaptation traits, including U6, TMEM41B, B4GALT7, 5S_rRNA, RBM27, POU4F3, NSD1, PRELID1, RGS14, SLC34A1, TMED9, B4GALT7, OR2AK3, OR2T16, OR2T60, OR2L3, and CTNNA1. Our results suggest that regions responsible for milk traits have generally experienced stronger selective pressure than others.

4.
Vet Sci ; 11(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38668419

RESUMO

This review describes the oestrus-to-ovulation interval, the possibility of predicting the time of ovulation, and the optimum time for insemination relative to oestrus in dairy cows. The duration of oestrus in dairy cows is approximately 8-20 h, with differences possibly related to the methods of oestrus detection and the frequency of observations. Most cows ovulate approximately 24-33 h after the onset of oestrus and 15-22 h after the end of oestrus. The interval from the preovulatory luteinising hormone (LH) surge to ovulation is approximately 4-30 h. Ovulation occurs when follicle diameter averages 18-20 mm. When it is possible to correctly determine the beginning of oestrus, artificial insemination can be performed utilizing the "a.m.-p.m. rule", and only one insemination may be applied. In cows with too long or too short oestrus-to-ovulation intervals, fertility can be compromised. One important factor that can alter the oestrus-to-ovulation interval is acute or chronic heat stress during the warm season. When there is a risk that insemination may occur too early or too late with respect to the time of ovulation, GnRH administration can be considered.

5.
J Appl Genet ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570427

RESUMO

Count traits are usually explored in livestock breeding programs, and they usually do not fit into normal distribution, requiring alternatives to adjust the phenotype to estimate accurate genetic parameters and breeding values. Alternatively, distribution such as Poisson can be used to evaluate count traits. This study aimed to compare and discuss the genetic evaluation for oocyte and embryo counts considering Gaussian (untransformed variable - LIN; transformed by logarithm - LOG; transformed by Anscombe - ANS) and Poisson (POI) distributions. The data comprised 11,343 total oocytes (TO), viable oocytes (VO), cleaved embryos (CE), and viable embryo (VE) records of ovum pick-up from 1740 Dairy Gir heifers and cows. The genetic parameters and breeding values were estimated by the MCMCglmm package of the R software. The posterior means of heritability varied from 0.40 (LIN) to 0.49 (POI) for TO, 0.39 (LIN) to 0.49 (POI) for VO, 0.30 (LOG) to 0.41 (POI) for cleaved embryos, and 0.19 (LIN) to 0.32 (POI) for viable embryos. The posterior means of repeatability varied from 0.56 (LIN) to 0.65 (POI) for TO, 0.53 (LOG) to 0.63 (POI) for VO, 0.44 (LOG) to 0.60 (POI) for CE, and 0.36 (LOG) to 0.56 (POI) for VE. Deviance information criterion and mean squared residuals indicated that POI model should be used for the genetic evaluation of embryo and oocyte count traits. Spearman's rank correlation between estimated breeding value (EBV) for embryo and oocyte count traits computed by POI, LOG, and ANS models was high (ranging from 0.77 to 0.99), indicating little reranking among the best animals. The POI model is the most adequate for genetic evaluation, resulting in more reliable EBV of oocyte and embryo count traits for Dairy Gir cattle.

6.
J Dairy Sci ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608951

RESUMO

In recent years, Genomic Selection (GS) has accelerated genetic gain in dairy cattle breeds worldwide. Despite the evident genetic progress, several dairy populations have also encountered challenges such as heightened inbreeding rates and reduced effective population sizes. The challenge has been to find a balance between achieving substantial genetic gain while managing genetic diversity within the population, thereby mitigating the negative effects of inbreeding depression. This study aims to elucidate the impact of GS on pedigree and genomic rates of inbreeding (ΔF) and coancestry (ΔC) in Nordic Jersey (NJ) and Holstein (NH) cattle populations. Furthermore, key genetic metrics including the generation interval (L), effective population size (Ne), and future effective population size (FNe) were assessed between 2 time periods, before and after GS, and across distinct animal cohorts in both breeds: females, bulls, and approved semen-producing bulls (AI-sires). Analysis of ΔF and ΔC revealed distinct trends across the studied periods and animal groups. Notably, there was a consistent increase in yearly ΔF for most animal groups in both breeds. An exception was observed in NH AI-sires, which demonstrated a slight decrease in yearly ΔF. Moreover, NJ displayed minimal changes in yearly ΔC between the periods, whereas NH exhibited elevated ΔC values across all animal groups. Particularly striking was the substantial increase in yearly ΔC within the NH female population, surging from 0.02% to 0.39% between the periods. Implementation of GS resulted in a reduction of the generation interval across all animal cohorts in both NJ and NH breeds. However, the extent of reduction was more pronounced in males compared with females. This reduction in generation interval influenced generational changes in ΔF and ΔC. Bulls and AI-sires of both breeds exhibited reduced generational ΔF between periods, in contrast to females that demonstrated an opposing pattern. Between the periods, NJ maintained a relatively stable Ne, 29.4 before and 30.3 after GS, while NH experienced a notable decline from 54.3 to 42.8. Female groups in both breeds displayed a negative Ne trend, while males demonstrated either neutral or positive Ne developments. Regarding FNe, NJ exhibited positive FNe development with an increase from 40.7 to 57.2. The opposite was observed in NH, where FNe decreased from 198.8 to 42.7. In summary, it was evident that the genomic methods could detect differences between the populations and changes in ΔF and ΔC more efficiently than pedigree methods. GS implementation yielded positive outcomes within the NJ population regarding the rate of coancestry but the opposite was observed with NH. Moreover, analysis of ΔC data hints at the potential to decrease future ΔF through informed mating strategies. Conversely, NH faces more pressing concerns, even though ΔF remains comparatively modest in contrast to what has been observed in other Holstein populations. These findings underscore the necessity of genomic control of inbreeding and coancestry with strategic changes in the Nordic breeding schemes for dairy to ensure long-term sustainability in the forthcoming years.

7.
Animals (Basel) ; 14(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612340

RESUMO

The aims of this study were to assess the genomic relatedness of Estonian and selected European dairy cattle breeds and to examine the within-breed diversity of two Estonian dairy breeds using genome-wide SNP data. This study was based on a genotyped heifer population of the Estonian Red (ER) and Estonian Holstein (EH) breeds, including about 10% of all female cattle born in 2017-2020 (sample sizes n = 215 and n = 2265, respectively). The within-breed variation study focused on the level of inbreeding using the ROH-based inbreeding coefficient. The genomic relatedness analyses were carried out among two Estonian and nine European breeds from the WIDDE database. Admixture analysis revealed the heterogeneity of ER cattle with a mixed pattern showing several ancestral populations containing a relatively low proportion (1.5-37.0%) of each of the reference populations used. There was a higher FROH in EH (FROH = 0.115) than in ER (FROH = 0.044). Compared to ER, the long ROHs of EH indicated more closely related parents. The paternal origin of the genetic material used in breeding had a low effect on the inbreeding level. However, among EH, the highest genomic inbreeding was estimated in daughters of USA-born sires.

8.
Vet Med (Auckl) ; 15: 117-127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617107

RESUMO

Background: Antimicrobial resistance (AMR) is a global threat to public and animal health. Escherichia coli is considered an indicator organism for monitoring AMR among gram-negative Enterobacteriaceae in humans and animals. The current study aims to assess the antibiogram profile of E. coli isolated from dairy cattle and in-contact humans in central Ethiopia and to identify risk factors associated with multidrug resistance (MDR). Methods: A cross-sectional study was conducted in which 58 farms were recruited from selected districts of central Ethiopia. E. coli was isolated using standard bacteriological techniques. A total of 200 representative isolates (140 from cattle and 60 from humans in contact) were randomly selected and tested for susceptibility to a panel of 13 antimicrobials using the Kirby-Bauer disc diffusion assay. Results: The highest rate of resistance was observed for sulfamethoxazole+trimethoprim (58.6%, 82/140) and amoxicillin+clavulanic acid (70.0%, 42/60) among E. coli isolates from cattle and hmans, respectively. In contrast, resistance rates in isolates from in contact humans with the cattle were 30%, 33.3%, and 66.7%, respectively. Resistance to tetracycline (p=0.02), streptomycin (p=0.03), and sulfamethoxazole+trimethoprim (p=0.007) was significantly high in E. coli isolated from cattle on commercial dairy farms than in those isolated from cattle on smallholder farms. There was no significant difference (p>0.05) in the rate of resistance between E. coli isolated from in contact humans with smallholder and commercial dairy farms. Antimicrobial use for treatment purpose (p=0.04) and non-compliance with the drug withdrawal period (p=0.03) were significantly associated with the farm-level occurrence of MDR. Conclusion: A high rate of resistance was detected in E. coli isolated from the feces of dairy cattle and in-contact humans. This necessitates an effective intervention through a one-health approach and further molecular studies are required to establish source attribution.

9.
Front Genet ; 15: 1360295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601075

RESUMO

Complete blood counts (CBCs) measure the abundance of individual immune cells, red blood cells, and related measures such as platelets in circulating blood. These measures can indicate the health status of an animal; thus, baseline circulating levels in a healthy animal may be related to the productive life, resilience, and production efficiency of cattle. The objective of this study is to determine the heritability of CBC traits and identify genomic regions that are associated with CBC measurements in lactating Holstein dairy cattle. The heritability of CBCs was estimated using a Bayes C0 model. The study population consisted of 388 cows with genotypes at roughly 75,000 markers and 16 different CBC phenotypes taken at one to three time points (n = 33, 131, and 224 for 1, 2, and 3 time points, respectively). Heritabilities ranged from 0.00 ± 0.00 (red cell distribution width) to 0.68 ± 0.06 (lymphocytes). A total of 96 different 1-Mb windows were identified that explained more than 1% of the genetic variance for at least one CBC trait, with 10 windows explaining more than 1% of the genetic variance for two or more traits. Multiple genes in the identified regions have functions related to immune response, cell differentiation, anemia, and disease. Positional candidate genes include RAD52 motif-containing protein 1 (RDM1), which is correlated with the degree of immune infiltration of immune cells, and C-X-C motif chemokine ligand 12 (CXCL12), which is critically involved in neutrophil bone marrow storage and release regulation and enhances neutrophil migration. Since animal health directly impacts feed intake, understanding the genetics of CBCs may be useful in identifying more disease-resilient and feed-efficient dairy cattle. Identification of genes responsible for variation in CBCs will also help identify the variability in how dairy cattle defend against illness and injury.

10.
iScience ; 27(4): 109605, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38633001

RESUMO

Supporting healthy pregnancy outcomes requires a comprehensive understanding of the molecular and cellular programs of peri-implantation development, when most pregnancy failure occurs. Here, we present single-cell transcriptomes of bovine peri-implantation embryo development at day 12, 14, 16, and 18 post-fertilization. We defined the cellular composition and gene expression of embryonic disc, hypoblast, and trophoblast lineages in bovine peri-implantation embryos, and identified markers and pathway signaling that represent distinct stages of bovine peri-implantation lineages; the expression of selected markers was validated in peri-implantation embryos. Using detailed time-course transcriptomic analyses, we revealed a previously unrecognized primitive trophoblast cell lineage. We also characterized conserved and divergence peri-implantation lineage programs between bovine and other mammalian species. Finally, we established cell-cell communication signaling underlies embryonic and extraembryonic cell interaction to ensure proper early development. These data provide foundational information to discover essential biological signaling underpinning bovine peri-implantation development.

11.
J Food Prot ; 87(6): 100273, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599382

RESUMO

Cattle are considered a primary reservoir of Shiga toxin (stx)-producing Escherichia coli that cause enterohemorrhagic disease (EHEC), and contaminated beef products are one vehicle of transmission to humans. However, animals entering the beef harvest process originate from differing production systems: feedlots, dairies, and beef breeding herds. The objective of this study was to determine if fed cattle, cull dairy, and or cull beef cattle carry differing proportions and serogroups of EHEC at harvest. Feces were collected via rectoanal mucosal swabs (RAMSs) from 1,039 fed cattle, 1,058 cull dairy cattle, and 1,018 cull beef cattle at harvest plants in seven U.S. states (CA, GA, NE, PA, TX, WA, and WI). The proportion of the stx gene in feces of fed cattle (99.04%) was not significantly different (P > 0.05) than in the feces of cull dairy (92.06%) and cull beef (91.85%) cattle. When two additional factors predictive of EHEC (intimin and ecf1 genes) were considered, EHEC was significantly greater (P < 0.05) in fed cattle (77.29%) than in cull dairy (47.54%) and cull beef (38.51%) cattle. The presence of E. coli O157:H7 and five common non-O157 EHEC of serogroups O26, O103, O111, O121, and O145 was determined using molecular analysis for single nucleotide polymorphisms (SNPs) followed by culture isolation. SNP analysis identified 23.48%, 17.67%, and 10.81% and culture isolation confirmed 2.98%, 3.31%, and 3.00% of fed, cull dairy, and cull beef cattle feces to contain one of these EHEC, respectively. The most common serogroups confirmed by culture isolation were O157, O103, and O26. Potential EHEC of fourteen other serogroups were isolated as well, from 4.86%, 2.46%, and 2.01% of fed, cull dairy, and cull beef cattle feces, respectively; with the most common being serogroups O177, O74, O98, and O84. The identification of particular EHEC serogroups in different types of cattle at harvest may offer opportunities to improve food safety risk management.

12.
J Anim Breed Genet ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588032

RESUMO

Up to now, little has been known about backfat thickness (BFT) in dairy cattle. The objective of this study was to investigate the lactation curve and genetic parameters for BFT as well as its relationship with body condition score (BCS) and milk yield (MKG). For this purpose, a dataset was analysed including phenotypic observations of 1929 German Holstein cows for BFT, BCS and MKG recorded on a single research dairy farm between September 2005 and December 2022. Additionally, pedigree and genomic information was available. Lactation curves were predicted and genetic parameters were estimated for all traits in first to third lactation using univariate random regression models. For BCS, lactation curves had nadirs at 94 DIM, 101 DIM and 107 DIM in first, second and third lactation. By contrast, trajectories of BFT showed lowest values later in lactation at 129 DIM, 117 DIM and 120 DIM in lactation numbers 1 to 3, respectively. Although lactation curves of BCS and BFT had similar shapes, the traits showed distinct sequence of curves for lactation number 2 and 3. Cows in third lactation had highest BCS, whereas highest BFT values were found for second parity animals. Average heritabilities were 0.315 ± 0.052, 0.297 ± 0.048 and 0.332 ± 0.061 for BCS in lactation number 1 to 3, respectively. Compared to that, BFT had considerably higher heritability in all lactation numbers with estimates ranging between 0.357 ± 0.028 and 0.424 ± 0.034. Pearson correlation coefficients between estimated breeding values for the 3 traits were negative between MKG with both BCS (r = -0.245 to -0.322) and BFT (r = -0.163 to -0.301). Correlation between traits BCS and BFT was positive and consistently high (r = 0.719 to 0.738). Overall, the results of this study suggest that BFT and BCS show genetic differences in dairy cattle, which might be due to differences in depletion and accumulation of body reserves measured by BFT and BCS. Therefore, routine recording of BFT on practical dairy farms could provide valuable information beyond BCS measurements and might be useful, for example, to better assess the nutritional status of cows.

13.
Vet World ; 17(2): 371-378, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38595654

RESUMO

Background and Aim: Cryptosporidium spp. are important parasites in the small intestines of humans and animals, particularly cattle. The aim of this study was to estimate the molecular prevalence and associated risk factors of Cryptosporidium infection in dairy cattle in five districts of Khon Kaen province, Thailand, and to identify Cryptosporidium spp. Materials and Methods: From July 2020 to October 2021, 296 fecal samples were collected from three groups of dairy cattle: Calves aged <3 months, calves aged 3 months-1 year, and calves aged >1 year. Cryptosporidium spp. were detected by polymerase chain reaction (PCR) amplifying the 18s RNA gene. Both genus-specific and species-specific primers were used to identify Cryptosporidium confirmed by DNA sequencing. Age, house floor type, and water trough type were evaluated as risk factors. We analyzed all associated risk factor information using the logistic regression test in the Statistical Package for the Social Sciences. Results: PCR results showed that 40 (13.51%) out of 296 samples were positive for Cryptosporidium spp., including Cryptosporidium bovis (57.50%) and Cryptosporidium ryanae (2.50%). There was a significant association between Cryptosporidium incidence, cattle age, and house floor type (p < 0.05). National Center for Biotechnology Information Basic Local Alignment Search Tool displayed 99.48%-100% nucleotide similarity of each Cryptosporidium spp. isolate with references recorded on GenBank. Conclusion: C. bovis and C. ryanae are commonly found in dairy cattle, especially calves, in Khon Kaen, Thailand, and the incidence was associated with age and house floor type. A molecular technique may be influential for species identification. The results of the present study would provide useful information for veterinarians and animal owners to understand better Cryptosporidium spp. and how to manage farms properly.

14.
Vet World ; 17(2): 389-397, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38595664

RESUMO

Background and Aim: Bovine anaplasmosis (BA) is one of the most important diseases of ruminants worldwide, causing significant economic losses in the livestock industry due to the high morbidity and mortality in susceptible cattle herds. Anaplasma marginale is the main causative agent of BA occurring worldwide in tropical and subtropical regions. This study aimed to investigate the first molecular detection and genetic diversity of A. marginale in dairy cattle in Khon Kaen Province, Thailand. Materials and Methods: Blood samples were collected from 385 lactating cows from 40 dairy farms in five districts of Khon Kaen, regardless of age and health status. To detect A. marginale, all DNA preparations were used for molecular diagnosis using a single polymerase chain reaction with the msp4 gene target. A phylogenetic tree was constructed from the msp4 gene sequences using molecular genetic characterization. Genetic diversity was calculated as haplotype diversity, haplotype number, number of nucleotide differences, nucleotide diversity, and average number of nucleotide differences. Results: The overall prevalence of A. marginale was 12.72% (49/385). The highest prevalence (17.19%) was found in Ubolratana district, followed by Muang, Kranuan, Khao Suan Kwang, and Nam Phong districts (14.94%, 14.74%, 13.79%, and 3.70%, respectively). Phylogenetic analysis showed that A. marginale was closely related to isolates from Australia (98.96%), China (99.68%), Spain (99.74%), and the USA (99.63%). Conclusion: The molecular prevalence of BA in dairy cattle is the first to be observed in this area, and the genetic variability with separated clusters shown in the msp4 gene of A. marginale revealed species variation in dairy cattle. This significant genetic diversity contributes to the understanding of the diversity of A. marginale and will be important for the control and prevention of A. marginale in dairy cattle.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38616224

RESUMO

Manure from food-producing animals, rich in antibiotic-resistant bacteria and antibiotic resistance genes (ARGs), poses significant environmental and healthcare risks. Despite global efforts, most manure is not adequately processed before use on fields, escalating the spread of antimicrobial resistance. This study examined how different cattle manure treatments, including composting and storage, affect its microbiome and resistome. The changes occurring in the microbiome and resistome of the treated manure samples were compared with those of raw samples by high-throughput qPCR for ARGs tracking and sequencing of the V3-V4 variable region of the 16S rRNA gene to indicate bacterial community composition. We identified 203 ARGs and mobile genetic elements (MGEs) in raw manure. Post-treatment reduced these to 76 in composted and 51 in stored samples. Notably, beta-lactam, cross-resistance to macrolides, lincosamides and streptogramin B (MLSB), and vancomycin resistance genes decreased, while genes linked to MGEs, integrons, and sulfonamide resistance increased after composting. Overall, total resistance gene abundance significantly dropped with both treatments. During composting, the relative abundance of genes was lower midway than at the end. Moreover, higher biodiversity was observed in samples after composting than storage. Our current research shows that both composting and storage effectively reduce ARGs in cattle manure. However, it is challenging to determine which method is superior, as different groups of resistance genes react differently to each treatment, even though a notable overall reduction in ARGs is observed.

16.
J Dairy Sci ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38428492

RESUMO

Reduction of methane emission may become necessary for sustainable milk production. Several studies indicate a relationship between rumination time and the level of methane emission. The objectives of the current study were to estimate environmental factors affecting daily rumination time in high yielding dairy cattle, genetic parameters for rumination time across parities, environmental and genetic correlations between rumination time and economic traits and to predict the consequence of inclusion of this trait in the Israeli breeding index. The data included more than 30 million daily records from 77,697 Israeli Holstein cows for rumination time and milk production. A lactation measure of daily rumination time per cow was computed as the mean of the residuals from a linear model analysis with rumination time as the dependent variable. The independent variables were parity and the square root, linear, quadradic and inverse of days in milk by parity. Because of the shape of the lactation curve for rumination time, separate linear model analyses were performed for records up to 40 DIM and records with >40 DIM. The phenotypic correlation between first and second parity lactations for rumination time was nearly 0.8, and close to 0.7 for milk. The heritability of lactation rumination time was close to 0.44 for parities 1-3. Heritability for milk production decreased from 0.5 in first parity to 0.3 in third parity. For both traits genetic correlations among parities were all >0.9. Thus, for routine genetic analysis of rumination time, records in the different parities can be considered the same trait. The genetic correlation between rumination time and milk on first parity was 0.25 and increased slightly with increase in parity. Genetic correlations between rumination time, based on the first 40 d in milk, were economically unfavorable with retained placenta but economically favorable with metritis, ketosis and displaced abdomen. Genetic correlations between rumination time and the 9 traits included in the Israeli breeding index; milk, fat, and protein production, SCS, female fertility, herd-life, milk production persistency, calving ease, and calf mortality; were all economically favorable, except for the correlation of 0.17 with SCS. With the current index, daily rumination time with a current mean of 536 min and standard deviation of 90 min is expected to increase by 11 min per day after 10 years of selection. Inclusion of this trait with a positive index weight equivalent to 10% of the index should increase rumination time by 19 min. All changes in expected gains due to inclusion of rumination time in the index were economically positive, except for fat and SCS. Inclusion of rumination time in the index should result in 1 kg less gain in fat, a miniscule gain of 0.03 for SCS; and gains of 1.5 kg protein, 0.3% female fertility and 5 d herd-life. Even though the case for a genetic correlation between rumination time and methane emission is still weak, inclusion of this trait in the commercial index may be justified, considering that equipment is now commercially available for routine recording at reasonable cost.

17.
Food Microbiol ; 120: 104485, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431330

RESUMO

This study aimed to elucidate the distribution, transmission, and cross-contamination of Clostridium perfringens during the breeding and milking process from dairy farms. The prevalence of 22.3% (301/1351) yielded 494 C. perfringens isolates; all isolates were type A, except for one type D, and 69.8% (345/494) of the isolates carried atyp. cpb2 and only 0.6% (3/494) of the isolates carried cons. cpb2. C. perfringens detected throughout the whole process but without type F. 150 isolates were classified into 94 pulsed-field gel electrophoresis (PFGE) genotypes; among them, six clusters contained 34 PFGE genotypes with 58.0% isolates which revealed epidemic correlation and genetic diversity; four PFGE genotypes (PT57, PT9, PT61, and PT8) were the predominant genotypes. The isolates from different farms demonstrated high homology. Our study confirmed that C. perfringens demonstrated broad cross-contamination from nipples and hides of dairy cattle, followed by personnel and tools and air-introduced raw milk during the milking process. In conclusion, raw milk could serve as a medium for the transmission of C. perfringens, which could result in human food poisoning. Monitoring and controlling several points of cross-contamination during the milking process are essential as is implementing stringent hygiene measures to prevent further spread and reduce the risk of C. perfringens infection.


Assuntos
Infecções por Clostridium , Clostridium perfringens , Animais , Bovinos , Humanos , Clostridium perfringens/genética , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/veterinária , Leite , Prevalência , Fazendas , Genótipo , Cruzamento
18.
Parasites Hosts Dis ; 62(1): 64-74, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38443771

RESUMO

This pilot study aimed to investigate the effects of regional and seasonal variations on the prevalence of Theileria orientalis and the hematological profile of non-grazed dairy cows in Korea. A total of 365 clinically healthy lactating Holstein Friesian cows from 26 dairy farms in 7 provinces that were categorized into northern, central, and southern regions were sampled during the warm period from July to August and the cold period from October to December. The detection of T. orientalis major piroplasm surface protein gene and the hematology non-grazed dairy cows were analyzed using peripheral blood samples. The T. orientalis prevalence was 20.0% (73/365). The prevalence in the southern region was 35.9%, which was significantly higher than that in the central (21.6%) and northern (12.9%) regions (P < 0.05). The prevalence during warm period was higher (43.0%) than that during the cold season (13.5%). The infected cows showed significantly lower erythrocyte counts in the southern region (5.8 ± 0.6 M/µl) and during the warm period (5.8 ± 0.7 M/µl) compared with those in the central and northern regions and during the cold season, which affected the extended RBC parameters, including hematocrit and hemoglobin concentrations. Our findings revealed the prevalence of T. orientalis in Korea, highlighting its high occurrence during warm periods and in certain geographical regions. Climatic factors could contribute to the health and productivity of cattle, as evidenced by the prevalence of T. orientalis and its negative impact on animals.


Assuntos
Theileria , Feminino , Animais , Bovinos , Theileria/genética , Lactação , Projetos Piloto , Prevalência , Estações do Ano , República da Coreia/epidemiologia
19.
Animals (Basel) ; 14(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473101

RESUMO

Our objective in this exploratory study was to evaluate the long-term impacts of pre-weaning social isolation vs. contact on subsequent growth and feed efficiency of Holstein heifers. As pre-weaned calves, 41 heifers were housed individually (n = 15 heifers) or in pairs (n = 13 pairs; 26 heifers). At 18 months of age, heifers were blocked by body weight and randomly assigned to one of three pens within a block (six to eight heifers per pen; six pens total), with original pairs maintained. Body weight (BW), hip height and width, and chest girth were measured at the start and end of the study. Each pen was given 3 days of access to a GreenFeed greenhouse gas emissions monitor to assess potential physiological differences between treatments in enteric methane emissions or behavioral differences in propensity to approach a novel object. During the 9-week study, heifers were fed a common diet containing 62.3% male-sterile corn silage, 36.0% haylage, 0.7% urea, and 1.0% mineral (DM basis). To calculate daily feed intake, as-fed weights and refusals were recorded for individual heifers using Calan gates. Feed samples were collected daily, composited by week, and dried to calculate dry matter intake (DMI). Feed refusal and fecal samples were collected on 3 consecutive days at 3 timepoints, composited by heifer, dried, and analyzed to calculate neutral detergent fiber (NDF), organic matter (OM), and DM digestibility. Feed efficiency was calculated as feed conversion efficiency (FCE; DMI/average daily gain [ADG]) and residual feed intake (RFI; observed DMI-predicted DMI). Paired and individually housed heifers did not differ in DMI, ADG, FCE, or RFI. Although no differences were found in initial or final hip height, hip width, or chest girth, heifers which had been pair-housed maintained a greater BW than individually housed heifers during the trial. Methane production, intensity, and yield were similar between treatments. Pre-weaning paired or individual housing did not impact the number of visits or latency to approach the GreenFeed; approximately 50% of heifers in each treatment visited the GreenFeed within 8 h of exposure. Digestibility of OM, DM, and NDF were also similar between housing treatments. In conclusion, pre-weaning pair housing had no adverse effects on growth, feed efficiency, or methane emissions at 18 to 20 months of age.

20.
Animals (Basel) ; 14(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38473200

RESUMO

This review paper provides an in-depth analysis of three critical metabolic diseases affecting dairy cattle such as subacute ruminal acidosis (SARA), ketosis, and hypocalcemia. SARA represents a disorder of ruminal fermentation that is characterized by extended periods of depressed ruminal pH below 5.5-5.6. In the long term, dairy herds experiencing SARA usually exhibit secondary signs of the disease, such as episodes of laminitis, weight loss and poor body condition despite adequate energy intake, and unexplained abscesses usually 3-6 months after an episode of SARA. Depressed milk-fat content is commonly used as a diagnostic tool for SARA. A normal milk-fat test in Holstein dairy cows is >4%, so a milk-fat test of <3% can indicate SARA. However, bulk tank testing of milk fat is inappropriate to diagnose SARA at the herd level, so when >4 cows out of 12 and <60 days in milk are suspected to have SARA it can be considered that the herd has a problem. The rapid or abrupt introduction of fresh cows to high-concentrate diets is the most common cause of SARA. Changes in ruminal bacterial populations when exposed to higher concentrate rations require at least about 3 weeks, and it is recommended that concentrate levels increase by no more than 400 g/day during this period to avoid SARA. Ketosis, a prevalent metabolic disorder in dairy cattle, is scrutinized with a focus on its etiological factors and the physiological changes leading to elevated ketone bodies. In total mix ration-fed herds, an increased risk of mastitis and reduced fertility are usually the first clinical signs of ketosis. All dairy cows in early lactation are at risk of ketosis, with most cases occurring in the first 2-4 weeks of lactation. Cows with a body condition score ≥3.75 on a 5-point scale at calving are at a greater risk of ketosis than those with lower body condition scores. The determination of serum or whole blood acetone, acetoacetate, beta-hydroxybutyrate (BHB) concentration, non-esterified fatty acids (NEFA), and liver biopsies is considered the best way to detect and monitor subclinical ketosis, while urine or milk cowside tests can also be used in on-farm monitoring programs. Concentrations >1.0 mmol/L or 1.4 mmol/L blood or serum BHB are considered diagnostic of subclinical ketosis. The standard threshold used for blood is 1.2 mmol/L, which corresponds to thresholds of 100 mcmol/L for milk and 15 mg/dL for urine. Oral administration of propylene glycol (250-400 g, every 24 h for 3-5 days) is the standard and most efficacious treatment, as well as additional therapy with bolus glucose treatment. Hypocalcemia is a disease of adult dairy cows in which acute hypocalcemia causes acute to peracute, afebrile, flaccid paralysis that occurs most commonly at or soon after parturition. Dairy cows are at considerable risk for hypocalcemia at the onset of lactation, when daily calcium excretion suddenly increases from about 10 g to 30 g per day. Cows with hypocalcemia have a more profound decrease in blood calcium concentration-typically below 5.5 mg/dL. The prevention of parturient paresis has been historically approached by feeding cows low-calcium diets during the dry period. Negative calcium balance triggers calcium mobilization before calving and better equips the cow to respond to the massive calcium needs at the onset of lactation. Calcium intake must be limited to <20 g per day for calcium restriction to be effective. The most practical and proven method for monitoring hypocalcemia is by feeding cows an acidogenic diet for ~3 weeks before calving. Throughout the review, emphasis is placed on the importance of early diagnosis and proactive management strategies to mitigate the impact of these metabolic diseases on dairy cattle health and productivity. The comprehensive nature of this paper aims to serve as a valuable resource for veterinarians, researchers, and dairy farmers seeking a deeper understanding of these prevalent metabolic disorders in dairy cattle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...